CHROMATOGRAPHY

fundamentals, methods, instrumentation, trends

Zdeněk Šimek

Materials for individual study

Masaryk University in Brno Faculty of Science Research Centre for Toxic Compounds in the Environment

RECETOX

-3

SEPARATION METHOD CATEGORISATION

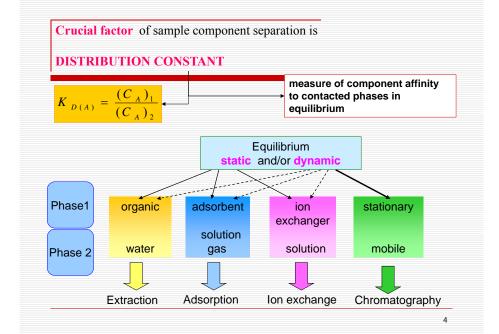
- 1. Separations based on *distribution of sample components between two phases*
- 2. Separations based on *migration rates differences of sample components*
 a) through semi-permeable membrane
 b) in force field
- membrane separations :
- ultrafiltration (hydrostatic pressure)
- reverse osmosis (hydrostatic pressure) dialysis (concentration differences on membrane sites)
- dialysis (concentration differences on membrane
 electrodialysis (electric potential differences)

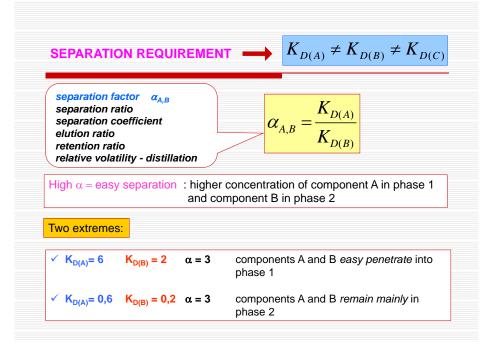
2

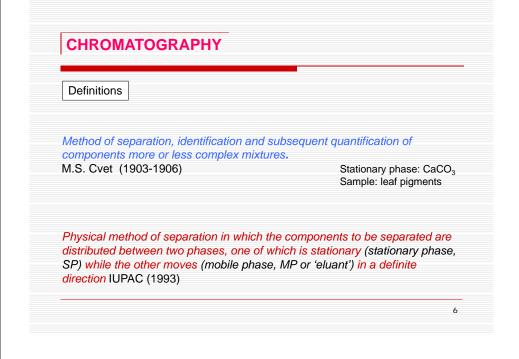
force field: - electrophoresis

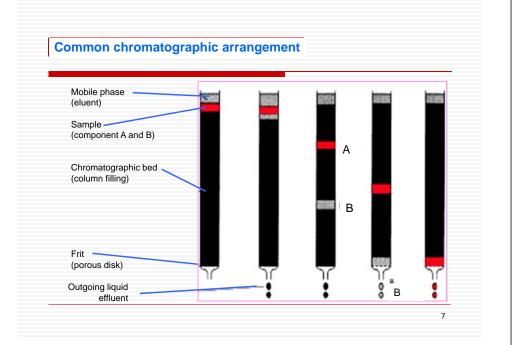
- thermal diffusion

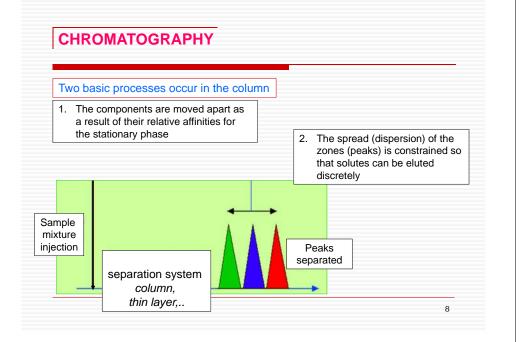
- mass spectrometry

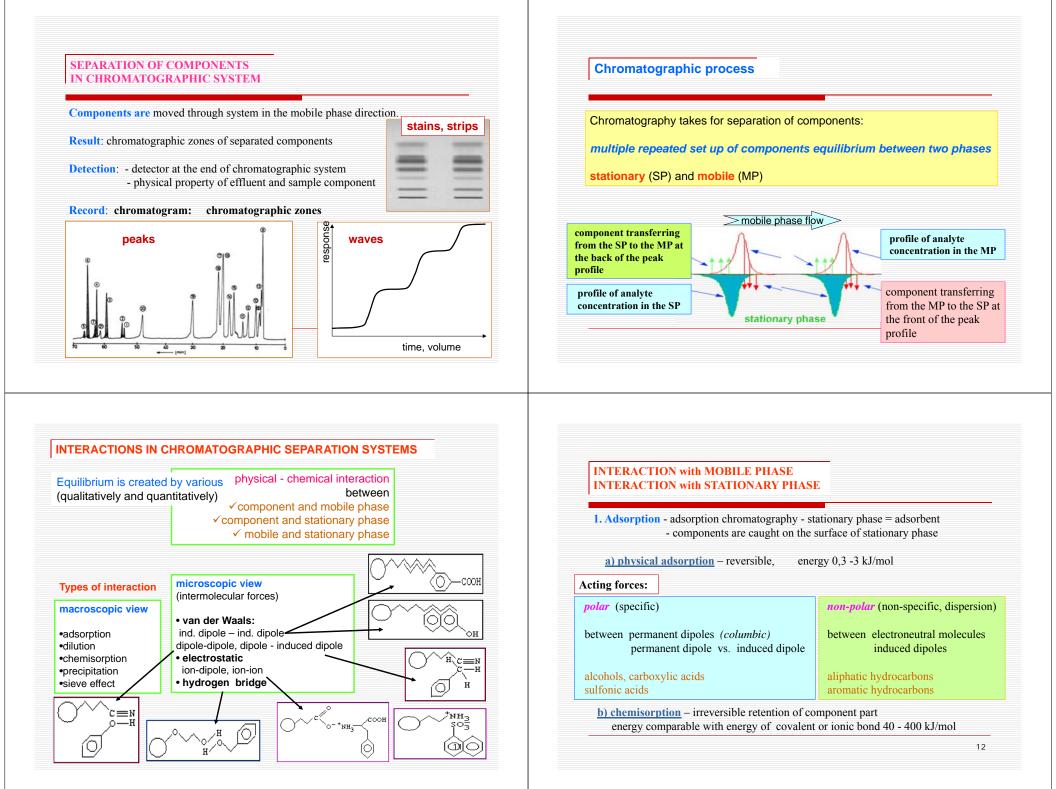

- ultracentrifugation

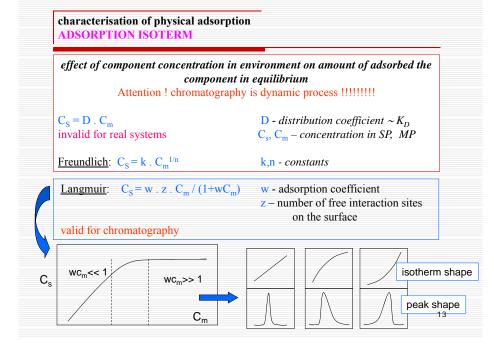

- gravitation

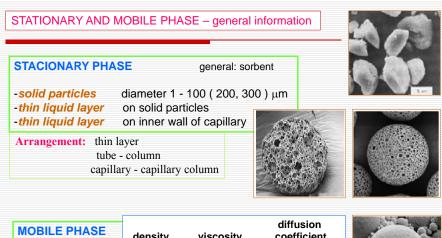

SEPARATIONS BASED ON


DISTRIBUTION OF SAMPLE COMPONENTS BETWEEN TWO PHASES


Types of interfaces	separation methods	abbreviation
gas - liquid	distillation	
	gas chromatography	GLC
gas - solid	sublimation	
-	gas chromatography	GSC
	molecular sieve	
liquid – liquid	extraction	
	liquid chromatography	LLC, SEC (GPC)
liquid - solid	fractional crystallization	()
	precipitation	
	liquid chromatography	LSC, IEC
	molecular sieve, inclusion	







	RACTION with MOBILE PHASE RACTION with STATIONARY PHASE	continue
2. Part	ition dissolution in two phases → partition equilibriu liquid bonded on the inert surface - film of bonc	
3. Prec	ipitation precipitant bonded on stationary phase separation of component according to solubility	product K _{sp}
4. Siev	e effect Inclusion: ions of similar dimensions and same charge are K ⁺ in NH ₄ MgPO ₄	caught in crystal lattice
	Occlusion component, which is not a part of crystal lattice <i>water in AgNO</i> ₃	is caught in cavities

MOBILE PHASE	density [g.cm ⁻³]	viscosity [g.cm ⁻¹ . s ⁻¹]	diffusion coefficient [cm ^{2 ·} s]	A.
• gas • supercritical fluid • liquid	0,001 0,1 – 1 1	0,0001 0,0001 - 0,001 0,01	0,1 0,001-0,0001 <0,00001	
				15

CHROMATOGRAPHIC METHOD CLASSIFICATION

1.According to mobile phase

Gas - gas chromatography - GC

liquid

- liquid chromatography - LC

р

solid

Supercritical fluid - supercritical fluid chromatography - SFC

SFC: - supercritical temperature and pressure CO₂, SF₆, Xe, NH₁

Higher values of diffusion coefficients in comparison with similar liquids, Lower viscosity

16

Т

supercritical fluid

CO₂ phase diagram

..........

liquid

gas

CRITICAL VALUES

Critical temperature - T _c : only one phase exists in a system of	Fluid CO ₂	T _c , ≪ 31.3	P _c , atm 72.9	Ъ 0.96
liquid-gas over T _c substance is in the fluid stage	N ₂ O NH ₃	36.5 132.5	72.5 112.5	0.94
substance is in the huid stage	n-Cs	196.6	33.3	0.51
Critical pressure-p.:	n-C4	152.0	37.5	0.50
Tlak needed to condensation of fluid	CCl ₂ F ₂ CHF ₃	111.8 25.9	40.7 46.9	1.12
substance at critical temperature	*density in	n g/ml at 40	0 atm	

How to prepare supercritical fluid

- 1. Substance in liquid form is exposed to temperature and pressure to form equilibrium with its vapour : two phase exist
- Created system is closed in tube and temperature is increased over T_c to form only one phase disregarding the pressure

17

CHROMATOGRAPHIC METHOD CLASSIFICATION

2. According to stationary phase:

Solid: Adsorption chromatography

Separation is based mainly on differences between the adsorption affinities of the sample components for the surface of an active solid.

GSC - gas <u>adsorption</u> chromatography LSC - liquid <u>adsorption</u> chromatography

Liquid: Partition chromatography

Separation is based mainly on differences between the solubility of the sample components in the stationary phase (gas chromatography), or on differences between the solubility of the components in the mobile and stationary phases (liquid chromatography).

GLC - gas <u>partition</u> chromatography LLC - liquid <u>partition</u> chromatography liquid on support liquid on support – immiscible with MP ¹⁸

CHROMATOGRAPHIC METHOD CLASSIFICATION

2a . Special types

Exclusion chromatography

Separation is based mainly on exclusion effects, such as differences in molecular size and/or shape or in charge.

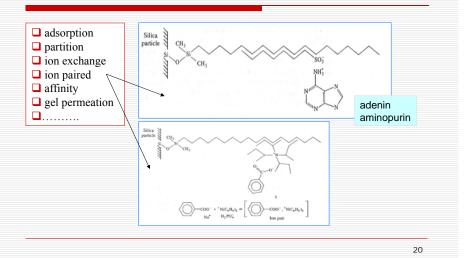
SEC - size exclusion chromatography may also be used when separation is based on molecular size.

GPC - gel permeation chromatography were used earlier to describe this process when the stationary phase is a swollen gel. *IEC* - ion-exclusion chromatography is specifically used for the separation of

ions in an aqueous phase.

Ion exchange chromatography, Ion chromatography - IC

Separation is based mainly on differences in the ion exchange affinities of the sample components. *competition of analyte and mobile phase ions for ionic groups bonded on the*


stationary phase surface

Affinity chromatography - AFC

Particular variant of chromatography in which the unique biological specificity of the analyte and ligand interaction is utilized for the separation.

"affinant" bonded on chromatographic support specific biological/biochemical interaction of antidote-antigen, enzyme-substrate, hormone-receptor 19

3. According to main separation mechanism

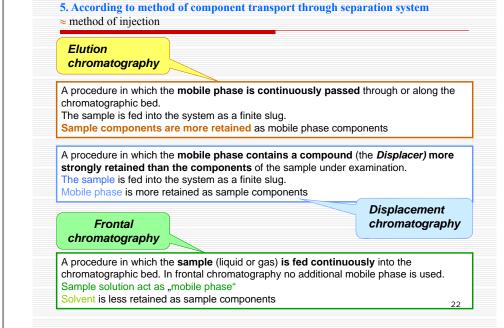
4. According to experimental set-up

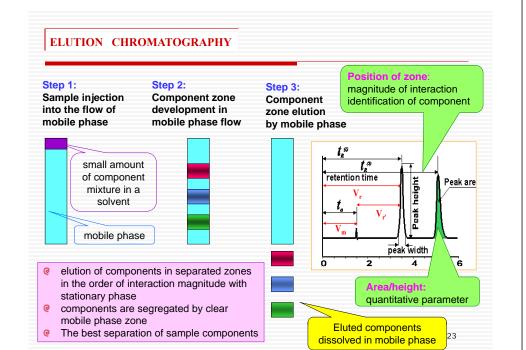
Column Chromatography

A separation technique in which the stationary bed is within a tube.

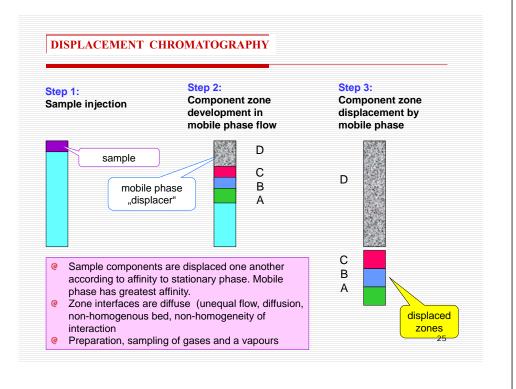
Packed Column: The particles of the solid stationary phase or the support coated with a liquid stationary phase may fill the whole inside volume of the tube or be concentrated on or along the inside tube wall leaving

Open-Tubular Column:

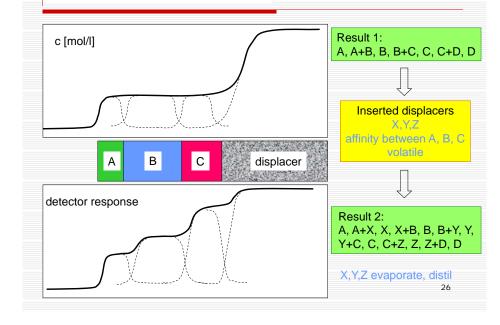

An open, unrestricted path for the mobile phase in the middle part of the tube

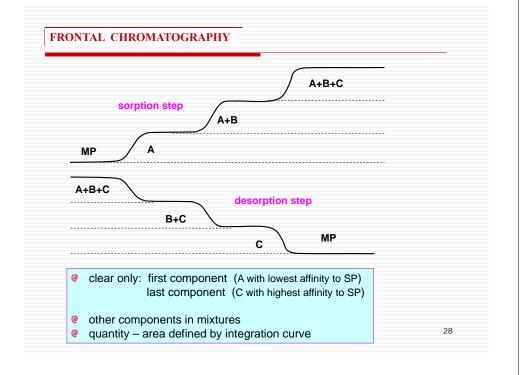

 Planar Chromatography
 Open-Bed Chromatography.

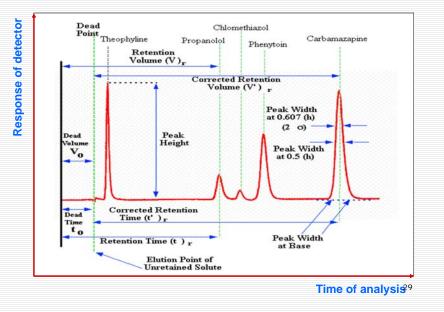
 A separation technique in which the stationary phase is present as or on a plane.


Paper Chromatography, PC: The plane can be a paper, serving as such or impregnated by a substance as the stationary bed

Thin Layer Chromatography, TLC: Layer of solid particles spread on a support, e.g., a glass plate




paration of amide $C_1 - C_4$ P: ethylacetate/heptane	radient - composition o	ess. of the mobile p atographic rui	bhase is c n. hase is cl	hanged in steps	during a
			3	4	
	eparation of amide C ₁ - C P: ethylacetate/heptane	-	et)


DISPLACEMENT CHROMATOGRAPHY

Example of a result of chromatographic analysis CHROMATOGRAM

SELECTED TERMS RELATED to THE CHROMATOGRAPHIC PROCESS and THE THEORY OF CHROMATOGRAPHY

,,*Equilibrium*" (component distribution between two phases) $A_{mobile \ phase} \Leftrightarrow A_{stationary \ phase}$

Distribution constant - crucial factor of separation - ratio of total concentrations of component A in two phases

31

K_n doesn't reflect how components are shared in two phases !!!! Better: **Partition Ratio Capacity Ratio** retention factor k $(k_{A} \text{ for component } A)$ **Capacity Factor** Mass distribution Ratio found in literature $\frac{(n_A)_1}{(n_A)_2} = \frac{(c_A)_1 \cdot V_1}{(c_A)_2 \cdot V_2} = K_{D,A} \frac{V_1}{V_2} = K_{D,A} \frac{V_{SP}}{V_{MP}}$ Meaning of k measure of the time the sample component resides in the stationary phase relative to the time it resides in the mobile phase how much longer a sample component is retarded by stationary phase than it would take to travel through column with velocity of mobile phase equilibrium ratio of component amount in SP and MP

migration speed of analyte in chromatographic bed

comparison of components interactions in MP and SP $(K_D \text{ requires } V_{MP} \& \mathcal{V}_{SP})$

ATTENTION!!!!!

Chromatographic bed, Chromatographic column is dynamic system

it is impossible to reach equilibrium in particular step of component transportation

TIME can be observed only,

time witch molecule spends in both phases during transport through chromatographic system.

TIME depends on interaction with mobile and stationary phase

different interaction

- \Rightarrow different time spent in column
- \Rightarrow different time spent between inlet and outlet of chromatographic system

RETENTION TIME t_R

R_F - retardation factor

The fraction of the sample component in the mobile phase at equilibrium; it is related to the retention factor and other fundamental chromatography terms

$$P_F = \frac{u_A}{u} = \frac{(n_A)_m}{(n_A)_m + (n_A)_s}$$
 n = m / M

 $(n_A)_s \rightarrow 0$ analyte molecule all the time in MP = no retention $\rightarrow R_F \rightarrow 1,0$ $(n_A)_m \rightarrow 0$ analyte molecule remains in SP $\rightarrow R_F \rightarrow 0$

 \mathbf{R}_{F} – measure of presence probability of compound A in MP

Relation between R_F a k ?????

 $\mathbf{k}_{\mathrm{A}} = (\mathbf{n}_{\mathrm{A}})_{\mathrm{s}} / (\mathbf{n}_{\mathrm{A}})_{\mathrm{m}}$

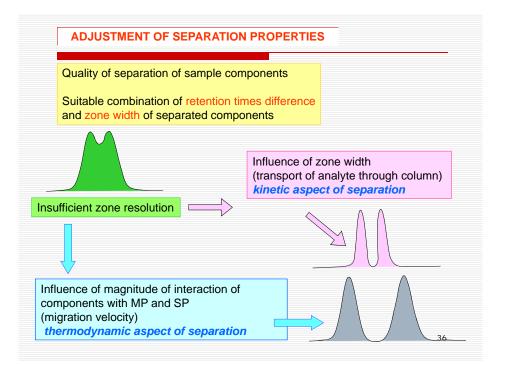
33

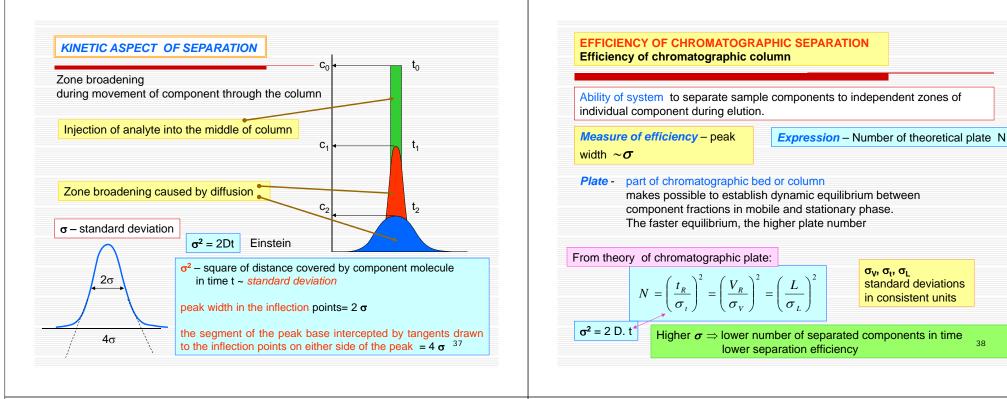
R

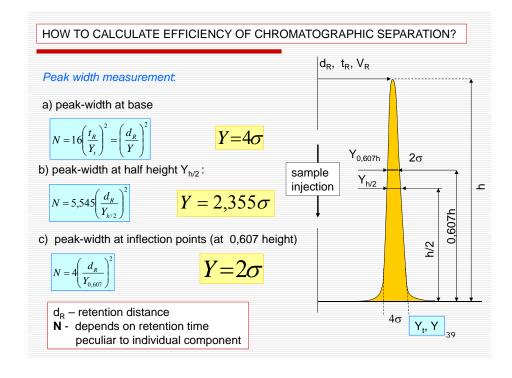
$$R_{F(A)} = \frac{(n_A)_s / k_A}{(n_A)_s / k_A + (n_A)_s} = \frac{1}{1 + k_A}$$

HOW TO OBTAIN k ??? $\begin{bmatrix}
 u_A = u.R_F = \frac{u}{1+k} \\
 \frac{L}{t_{R,A}} = \frac{L}{t_M(1+k)} \\
 \frac{1}{t_{R,A}} = \frac{1}{t_M(1+k)}
 \begin{bmatrix}
 V_R - V_M = \frac{t_{R,A}}{t_M} - 1 = \frac{V_{R,A} - V_M}{V_M} = \frac{V_{R,A}}{V_M} = \frac{t_R}{t_M} \\
 \hline
 V_R - V_M = V'_R - adjusted retention volume \\
 t_R - t_M = t'_R - adjusted retention time
 \end{bmatrix}$

k_A can be obtained from chromatogram !!!!!!!


- velocity ratio of analyte and mobile phase
- ratio of times spent in chromatographic system for retained and unretained solute


If
$$\mathbf{V}_{\mathbf{M}} = \mathbf{V}_{\mathbf{m}}$$


$$\frac{V_{R,A} - V_M}{V_M} = K_D \frac{V_S}{V_M}$$

$$V_R = V_M + K_D V_S$$

$$\frac{V_R' = K_D V_S}{V_R' = K_D V_S}$$
Retention volume depends on volume of stationary³Bhase

Effective plate number - N_{eff}

A number indicative of column efficiency calculated by using the adjusted retention volume (time) instead of total retention volume (time).

$$N_{eff} = 16 \left(\frac{t_{R}}{Y_{t}}\right)^{2} = 16 \left(\frac{d_{R} - d_{M}}{Y}\right)^{2} = n \left(\frac{t_{R} - t_{M}}{t_{R}}\right)^{2}$$

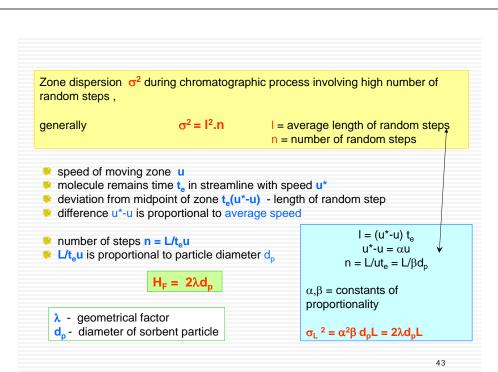
N is usually calculated for one meter of column 10 000 plate / meter

Comparison of efficiency of different columns:

Height Equivalent to One Plate H plate height

$$H = \frac{L}{N} = \frac{LY_t^2}{16t_R^2} = \frac{\sigma^2}{L}$$

40



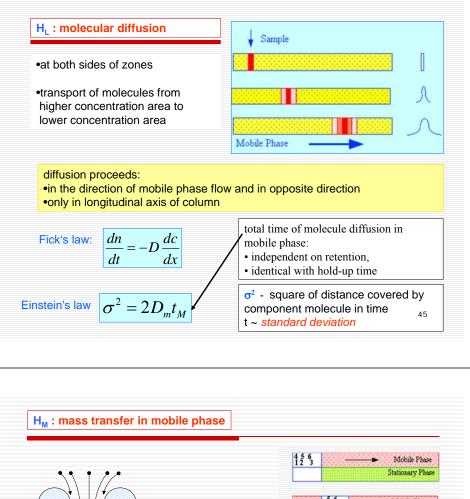
- 1. Theory of chromatographic plate unable to describe separation correctly
- 2. Dynamic theory van Deemter

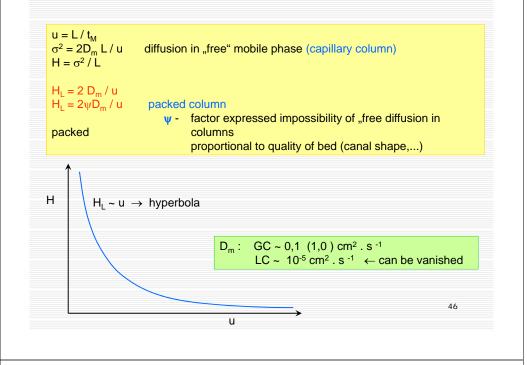
Four factors causing zone broadening:

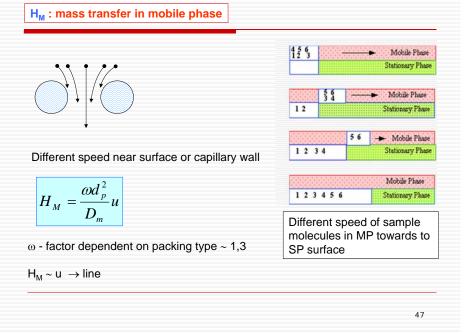
- 1. eddy diffusion in mobile phase H_F
- 2. molecular (longitudinal) diffusion in mobile phase HL
- 3. resistance to mass transfer in the stationary phase H_s
- 4. resistance to mass transfer in the mobile phase H_M

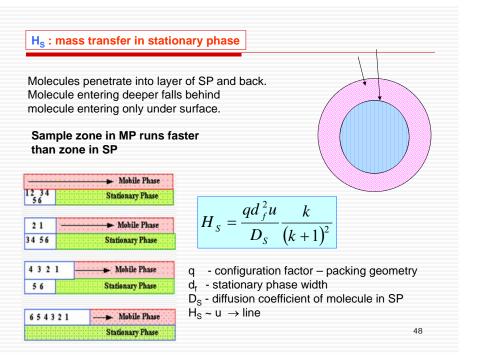
 $H = H_F + H_L + H_S + H_M$

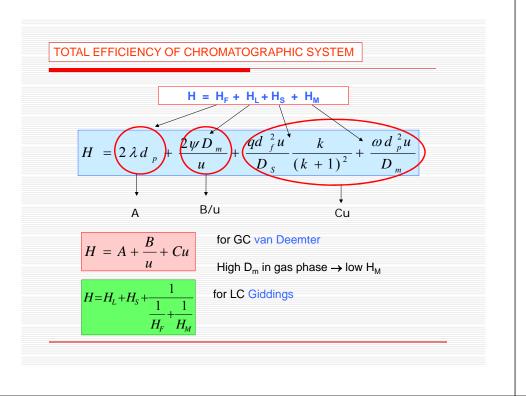
Lower particle: higher bed homogeneity lower differences in "canals" Flow-round: different for spherical particles and irregular 42 The eddy diffusion is not proportional to linear velocity of mobile phase $H_{\rm F} \sim u \rightarrow \text{parallel line with } x$ -axis н $H_{\rm F} = 2\lambda d_{\rm p}$ u 44

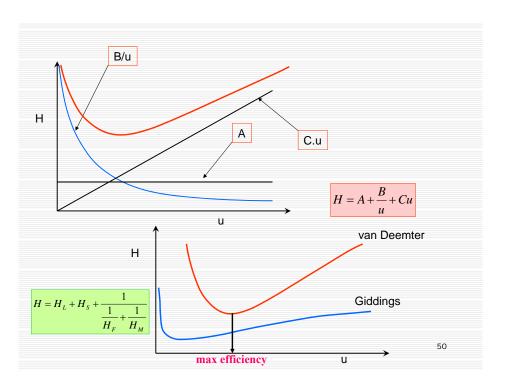

Different speed of sample particles v in broad and narrow "canals"


dimension and shape of stationary phase particles


High number of streamlines, different local speed


Eddy diffusion is proportional to


H_F : the eddy diffusion

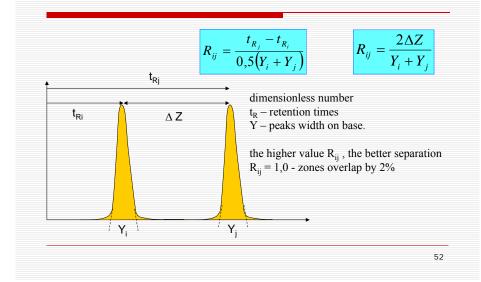


$$H = 2\lambda d_{p} + \frac{2\psi D_{m}}{u} + \frac{q d_{f}^{2} u}{D_{s}} \frac{k}{(k+1)^{2}} + \frac{\omega d_{p}^{2} u}{D_{m}}$$

$$H = A + \frac{B}{u} + Cu$$

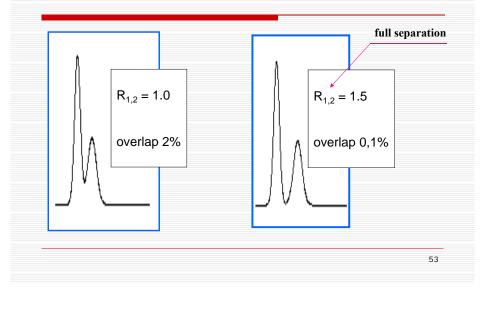
$$\begin{array}{c} \textbf{GC} \\ A: \text{ open tubular column} \rightarrow \textbf{eliminated} \\ B: \text{ significant owing to high diffusion coefficients} \\ (\text{high diffusion in gas phase}) \\ C: \text{ thin films} \rightarrow \text{lower} \\ H: \sim 0.1 \text{ mm} \end{array}$$

LC (HPLC)

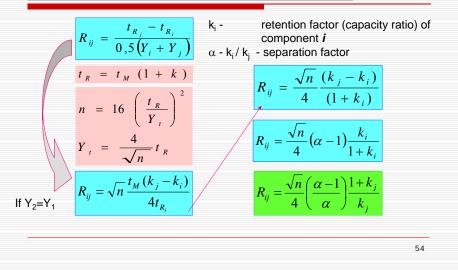

- A: packed columns, high-homogenous particles, high pressure → lower
 B: significant owing to relatively high diffusion coefficients in liquid phase (lower than in GC)
- C: thin films \rightarrow lower
- H: ~ 0.1 mm

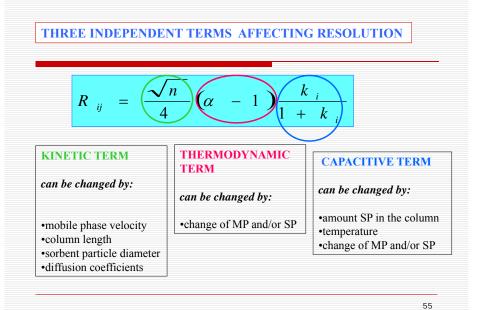
CE

- A: open tubular column \rightarrow eliminated
- B: significant owing to relatively high diffusion coefficients in liquid phase
- C: only one "phase", no equation between phases \rightarrow eliminated
- H: ~ 0.001 mm


PEAK RESOLUTION

Measure of relative separation of two adjacent zones - peaks


PEAK RESOLUTION


Measure of relative separation of two adjacent zones - peaks

Effect of chromatographic parameters on resolution

difference of elution times ~ thermodynamics of separation
 zones (peaks) width ~ kinetics of separation

obile ph	hydroge	ert – transport of n, nitrogen, heliui g to type of detec	m, argon, CO ₂	0	fficie
	Carrier gas	D _G (30 °C)	η (50 °C)	η (150 ºC)	
	H ₂	0.277	94	112	
	Не	0.248	208	249	
	N ₂	0.073	188	227	
	Ar	0.059	242	296	
	CO ₂	0.059	162	206	
	Diffusion coeffic and viscosity η	cients D_G (cm ² s ⁻¹) (μΡ) of most used	of n-octane carrier gases		
	H ₂ disadvantage:	explosive in mixt	ure of air - Atte	ention	
	advantage:	fast separation separation	· ·		5

Sample components to be separated, main application:

- gas mixtures
- volatile organic compounds b.p. < 400°C (requirement for sample conversion into gas phase)

Interaction with stationary phase:

- Adsorption gas chromatography GSC
- Partition gas chromatography GLC

film of non-volatile liquid on the surface of solid carrier

gas-solid phase

gases, liquids (low M_r)

Elution:

isocraticgradientconstant temperaturevariable temperature

INSTRUMENTATION

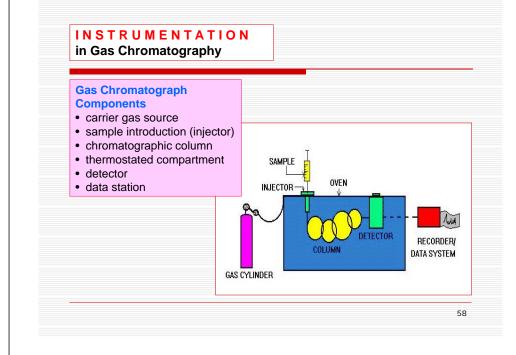
in Gas Chromatography

Sources of carrier gas:

gas cylinders generators (molecular sieves)

couplings, connections :

metal capillary, ideal gas tightness


gas purifying :

moisture, low molecular hydrocarbons and oxygen removing

flow regulation :

a) mechanical regulatorsb) electronic regulators

gas flow : 1 - 100 ml/min., $\ \pm$ 1 - 2 % accuracy $\ \pm$ 0.2 % repeatability of set value

Isocratic GC - Isotherm	TEMPERATURE MODES	
Two basic characteristics:		
retention data \cong number of methy (vapour press	ylated groups (-CH ₂ -) sure, boiling point)	
$\cong 1/T_c (\log t_R = f$ linear dependence of h (n-alkanes, n-alky)	omologous series	T_c – column temperature
disadvantages :		
□ it is not possible to find temp difference than 100 °C	erature suitable for separation of	components with b.p.
poor separation of early elute	ed peaks	
1 1 5	ed peaks ted peaks (<i>broadened peaks</i>)	
poor delectability of later elu	ted peaks (broadened peaks)	
 poor delectability of later elu Gradient GC – <i>Temperature prog</i> analytes retention times decreas improving of delectability 	ted peaks (broadened peaks) gramming sing in samples with broad range	of boiling points
 poor delectability of later elu Gradient GC – <i>Temperature prog</i> analytes retention times decreas improving of delectability large volumes of injected sample 	ted peaks (broadened peaks) gramming sing in samples with broad range	

59

57

INJECTORS for GC

Function:

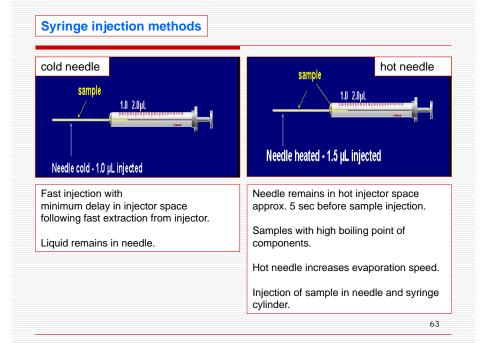
- \checkmark Sample injection on the column beginning as a narrow zone
- ✓ Conversion of sample into the gas phase
- Mixing of sample and carrier gas ahead of column entry

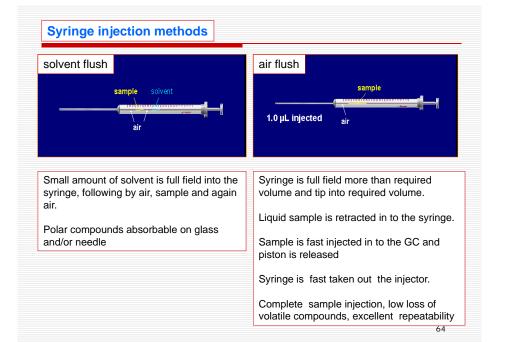
Requirements (ideal) :

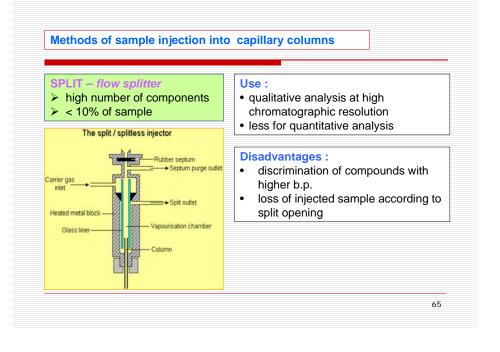
- injection without decreasing of separation efficiency
- injection without temperature degradation and sample adsorption


61

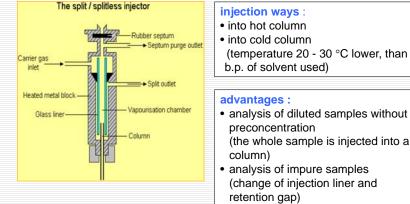
- \succ injection without discrimination according to b. p, polarity or M_r
- > injection with total recovery of all sample components


Injection devices


depend on sample state


- gases gastight syringes, injection valves (volume up to 1 ml)
- *liquids* syringes, autosamplers (volume 0.5 5 µl)

Methods of sample injection



without flow splitter

diluted samples

> approx. 80% of sample

Splitter closed 1 - 2 minutes, sample enters column any longer

advantages :

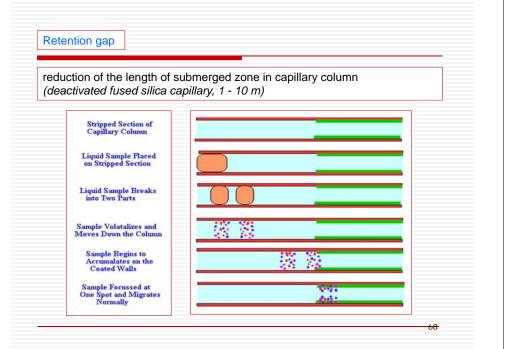
- analysis of diluted samples without preconcentration (the whole sample is injected into a
- column) • analysis of impure samples (change of injection liner and retention gap)

66

under b.p. of solvent, thermolabile components

injection ways

- direct on column (micro syringe with thin needle,
- injection into short column with i.d. 0.53 mm)

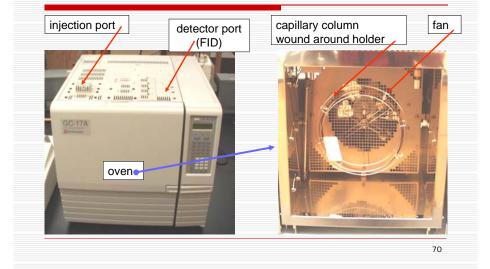

temperature 20 - 30 °C lower, than b.p. of solvent used

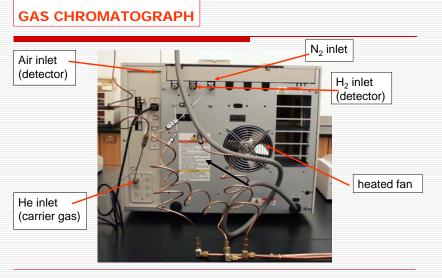
difficulties:

- · Sample could be broken into separated parts.
- · Bubbles generated et the inlet of column separate sample into different pars of column depending on way of solvent evaporation
- Zone with different concentration are formed, each behaves as individual ٠ injection.

67

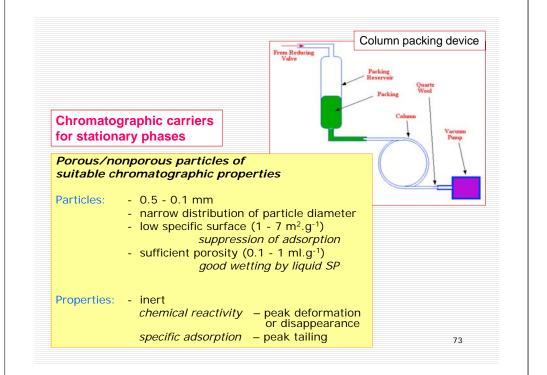
Chromatogram with more peaks of the same component.

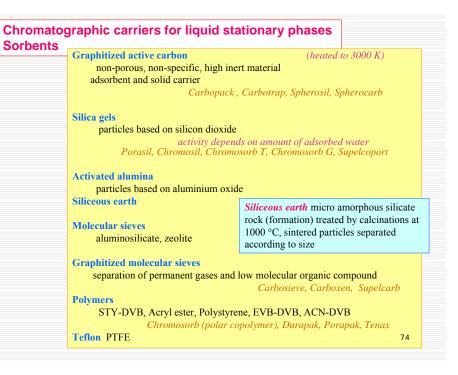

TV INJECTOR (programmed temperature vaporization)


 Control of temperature of injector body with liner packed with chromatography bed.
 >advantage combination of split, split less and on-column injectors.

advantages

- minimum discrimination caused by injection from needle of microinjector
- minimum discrimination according to b.p. of analytes
- not necessary to use special needle as for on column injection
- large volume injection
- elimination of solvent and low molecular compounds before analysis
- · retention of non-volatile compounds in injection liner
- · high repeatability of retention times and peaks areas.


GAS CHROMATOGRAPH



COLUMN FOR GC / STATIONARY PHASES

PACKED COLUMNS:		
tubes:	Al, Cu, Ni, stainless steel, glass,	V. Mar
	2-6 mm, 1-5 m	
particles:	0,13 až 0,40 mm	
adsorbents (GSC):	silica gel, alumina, active carbon,	- Contra
	molecular sieve,	
	porapak (styren-divinylbenzen cop	olymer)
bonded phases (GLC):	non-volatile, chemically inert liquids	6
• • •	siloxane, polyethylenglykole, esters	
	(squalan, C ₃₀ H ₆₂),silicone	
inert carriers:	siliceous earth, modified siliceous e	earth
Properties of packed of	columns:	
worse resolution		
higher volume of station	ary phase, preparative purposes	
low-boiling components	, less retained gases	72

Liquid stationary phases for GC

	Туре	Product name	Tempe rature °C	Use	Properties
High molecular hydrocarbons	Non-polar	Squalan Apiezon	< 300	Hydrocarbon s Non-polar compounds	easy oxidizable
Perfluorinated alkanes	Polar Fluorinated alkylesters	Fomblin Fluorad	< 250	Halogens Amines Phenols Carboxylic acids	High reactivity Low temperature stability
Polysiloxanes	- R ₂ SiO – Variable polarity	OV SE	< 350	Non polar- polar	High temperature stability easy oxidizable
Polyethylenglykoles HO(CH ₂ CH ₂ O) _n C	Polar H ₂ CH ₂ OH	Carbowax Superox	<220 < 300	oxygen compounds Alcohols	Low temperature stability easy degradable 76

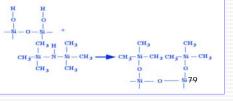
Liquid stationary phases for GC

requirements:

- low volatility (vapor pressure 1 10 Pa)
- suitable chemical composition (from non-polar to polar phase)
- good solubility of separated components in the liquid phase
- different solubility of separated components
- no chemical reaction with analytes
- High molecular hydrocarbonsPerfluorinated alkanes
- Polysiloxanes
- Polyethylenglykoles
- Polyfenylethers, Phtalates,
- Liquid crystals

Selected commercially available polysiloxane phases

Dimethylsiloxane	CH ₃
Dimethylsiloxane	CH ₃
Phenylmethyldimethylsiloxane	C ₆ H ₅ (20%)
Phenylmethylsiloxane	C ₆ H ₅ (50%)
Phenylmethyldiphenylsiloxane	C ₆ H ₅ (75%)
Trifluoropropylmethylsiloxane	$CH_{2}CH_{2}CF_{3}$ (50%)
Cyanopropylmethylsiloxane	C ₆ H ₅ (25%)
Dicyanoalkylsiloxane	C ₃ H ₆ CN(20%)
	Phenylmethyldimethylsiloxane Phenylmethylsiloxane Phenylmethyldiphenylsiloxane Trifluoropropylmethylsiloxane Cyanopropylmethylsiloxane


Liquid crystals

 polar liquids strong columbic interactio positional isomers 	n of ions with analyte
Cation Tetrabutylamonium	Anion Perfluorooktansulfonate 4-toluensulfonate Tetrafluoroborate Picrate
Tetrapentylamonium	4-toluensulfonate
Tributylbenzylphosphonium	Chloride
Ethypyridinium	Bromide

carrier	stacionary phase (w/w)	polarity	temperature limit (°C)	use
Porasil C	3-hydroxypropionitrile (3%)	middle	135	hydrocarbons, aromates
Porasil C	Carbowax 400 (7.86%)	non-polar	175	alcohols
Porasil C	n-Octanol	polar	175	alcohols, hydrocarbons
Porasil S	Carbowax400 (16.75%)	non-polar	230	hydrocarbons
Porasil S	Carbowax 4000	polar	230	aromates, chloraromtes
Porasil F	Carbowax 400 (1.41%)	non-polar	230	waxes,steroids, PAH

Porasil C (100 m²/g, pores 30 nm)
Porasil S (300 m²/g)

• Porasil F (10 m²/g, pores 300 nm)

77

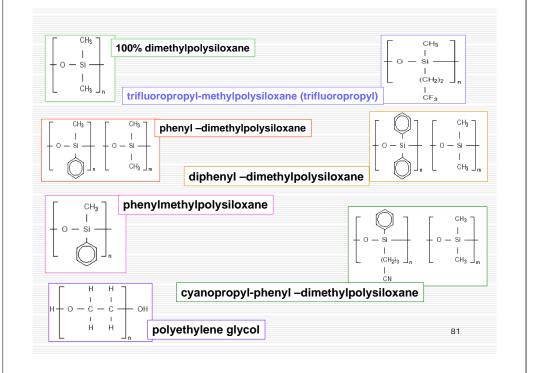
CAPILLARY COLUMNS

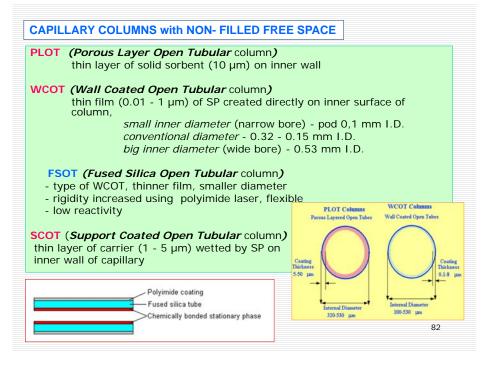
capillaries with low inner diameter wetted by thin layer of liquid
 efficiency 100 times higher than packed columns.

Marcel Golay 1957

- glass, fused silica, organic polymers (PAD, PES, PTFE, FEP)
- metals (stainless steel, Ni, Al, Cu)
- i. d. 100 530 μm (700)
- length 15 100 m
- layer 0.1 10 μm

•




According to stationary phase immobilization

- classical capillary columns
 - disperse forces-bonded stationary phase,

permanent dipoles, induced dipoles, hydrogen bonds,

capillary column with bonded phase SP chemically bonded to inner wall of capillary column.

CAPILLARY COLUMNS FILLED in WHOLE VOLUME

Advantage: column capacity improving

packed column with floating and irregular packing

capillary tube drawn from tube field by bulk chromatography carrier followed by wetting of stationary phase

packed column with regularly loaded bad

capillary packed in ultrasonic bath using inert gas

DEACTIVATION

elimination of *negative effect of silanol groups* from inner surface of capillary

silylation

aliphatic or cyclic silylation dyes

polycondensation

reaction of silanol groups with deposited thin layer film of Carbowax or silicone stationary phase at high temperature

esterification

reaction of silanol groups with aliphatic alcohols C4 - C10 and tetraethylglycole at high temperature

polyimide layer

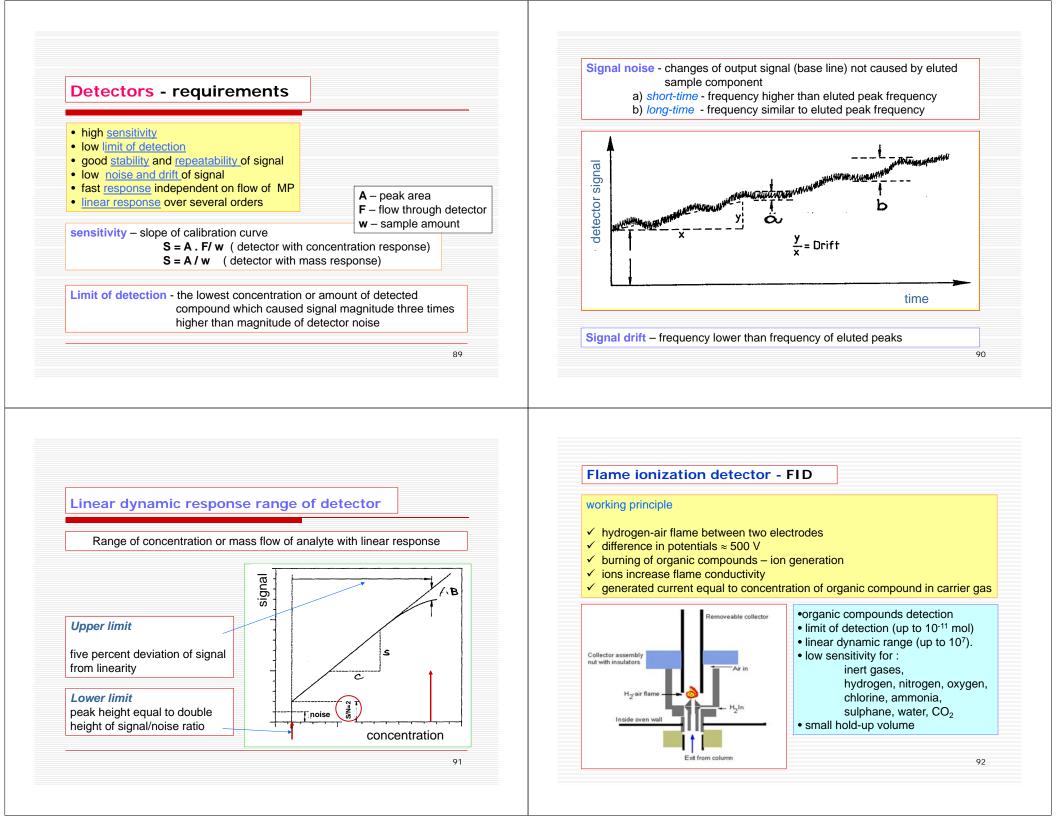
layer of polyimide (1 - 5 μ m) on the inner surface of capillary

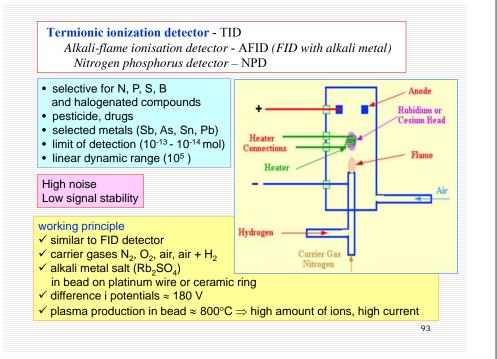
Retention time in gas chromatography

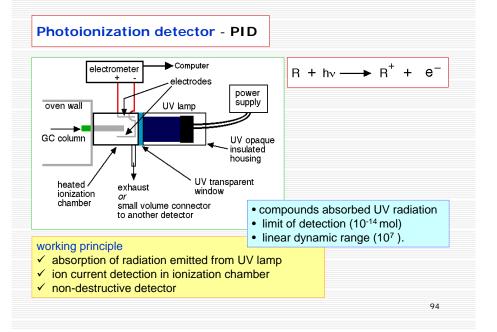
Gas compressibility - change of mobile phase volume
 Decry's law for liquid flow trough nonporous bed

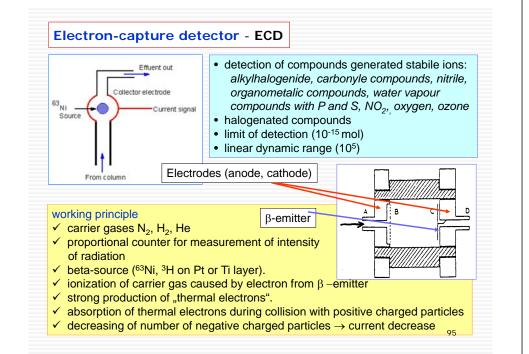
$$u = -\frac{B_o}{\varepsilon_o \eta} \frac{dp}{dz}$$

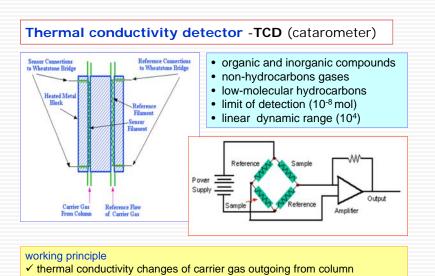
$$u = \left(\frac{B_o}{\varepsilon_o \eta L}\right) (p_i - p_o)$$

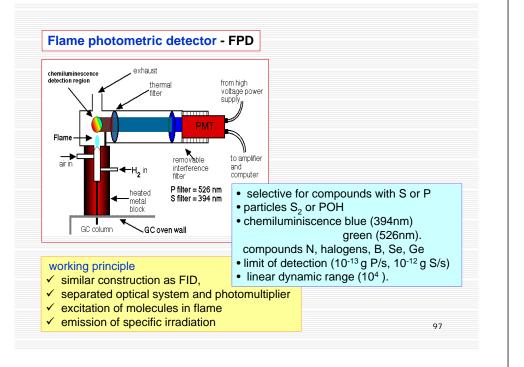

pro GC
$$u(p_o) = \left(\frac{B_o}{\varepsilon_o \eta L}\right) \frac{\left(p_i^2 - p_o^2\right)}{2 p_o}$$

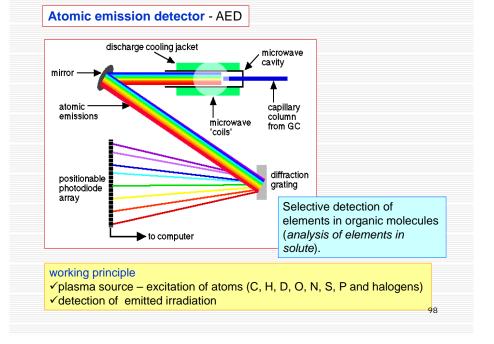

 $u(p_o)$ – velocity at pressure p_o ,

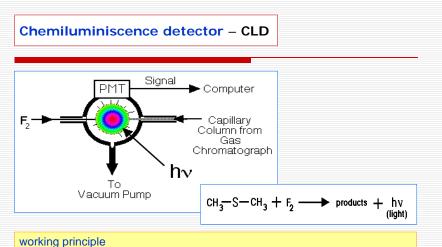

$$\begin{split} & \left(\overline{p}\right) = \left(\frac{B_o}{\varepsilon_o \eta L}\right) \frac{\left(p_i^2 - p_o^2\right)}{2\overline{p}} = \frac{u(p_o)p_o}{\overline{p}} = u(p_o)j \\ & \left(\overline{p}\right) = \frac{2}{2} \left(\frac{p_i^3 - p_o^3}{p_o^2}\right) \\ & \overline{p} = \frac{2}{3} \left(\frac{p_i^3 - p_o^3}{p_o^2 - p_o^2}\right) \\ & \overline{p} \quad \text{endel pressure in column} \\ & \mathcal{U}(\overline{p}) \text{ evolotity at middle pressure} \\ & \overline{j} \quad \text{otherwise compressibility factor} \\ & \left(\overline{j}\right) = \frac{3}{2} \left(\frac{p_i}{p_o}\right)^2 - \frac{1}{2} \int_{\overline{j}} \left(\frac{p_i}{p_o}\right)^3 - \frac{$$


Detectors - classificat	tion		
	TCD, ECL	<i>PID</i> component in detector	
according to detector selectivity universal - response to every component in selective - response to a related group of s specific - response to a single component similar chemical characteristics	ample cont t or to a lim	ponent in the effluent	
according to detection principle ionization of molecules bulk physical properties of molecules optic properties of molecules electrochemical properties of molecules	(FID, TII (TCD) (FPD) (HECD)	D, PID, ECD, HID)	


87

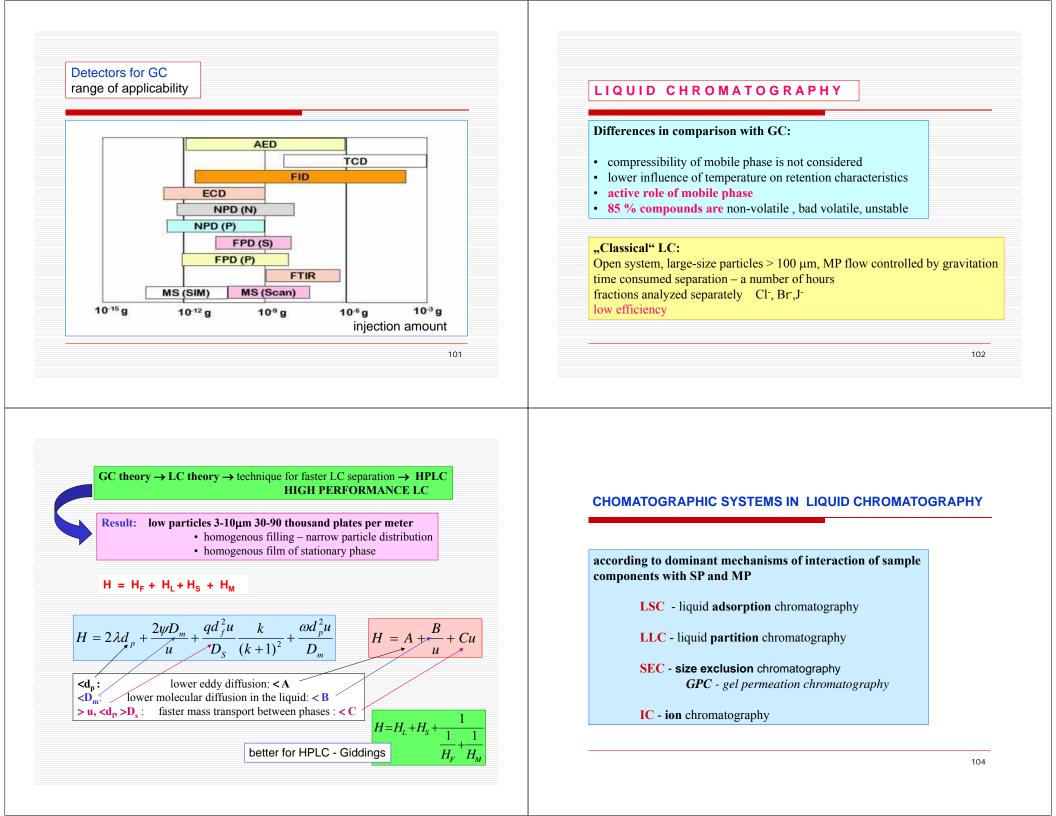






✓ heated Pt, W, Au fibre

✓ measurement of temperature changes of sensor (thermistor, metal fibre)



chemically produced vibration- or electron- excited particles excited particles emit photons

Comparison of most used GC detectors

Detector type	Signal generation	Signal production	Advantages	Disadvantages	Limit of detectio (g analyte /ml carrier gas)
TCD	thermal conductivity of gaseous analyte	change of electrical resistance of filament in stream of analyte	universal, simple, wide dynamic range, non- destructive number of compounds	low sensitivity	10 ⁻⁸ (10-100 ppm)
FID	ionization of analyte in H ₂ /air flame	current of ions	high sensitivity, wide dynamic range, broad applicability	destructive	10 ⁻¹³
TID	ionization of analyte in H ₂ /air flame	current of ions	selective for org. P or N		10 ⁻¹³ Not for N a P
ECD	decreasing of ionisation of carrier gas caused by radioactive source	current of ions decreased in the presence of organic molecule	selective for org. compound with electronegative function groups, non-destructive, high sensitivity	narrow dynamic range	10 ⁻¹⁵
MS	ionization of analyte	ions of analyte, separation according to mass/charge ratio	universal. complex mixture of organic compound, speed, high sensitivity, identification of compounds	price	10 ⁻¹²

LSC - Liquid adsorption chromatography

Stationary phases for LSC - solid particles

particle character particle property	irregular fully porous	spherical fully porous	spherical surface porous
specific surface	100-500 m ² /g	100-500 m ² /g	5-15 m ² /g
capacity	high	high	low
permeability	lower	high	high
efficiency	lower	high	high
area of applicability	preparative	analytical	analytical
price	low	high	high
Basic material for SP: - po Two forms: wide pores narrow pores	> 10 nm s	silica gel - aluminium oxi urface area: 100	
-cH₃ -c	ing range of pH: 2	- 12	

Alumina (aluminium oxide): Image: surface strong electron-acceptor centres strong electrostatic field, creation of induced dipoles

	- shong cicculostatic field, cicatic	n or maacea arpores	E
D pH = 8 - 11	- separation of weak acidic comp	ounds from neutral	
	- strong acids - chemisorption (n	o requested phenomenon)	
activation	- 400 °C 6 - 16 hod, activity con	ntrol with water addition	
capacity	- lower than silica gel		2
Silica gel:			Ĩ
surface	- hydroxyl (silanol) groups		l
	- creation of H-bridges		
□ pH ≥ 8	- chemically labile	a <u>an</u> this and the	ŝ

pH 3 - 5 - strong retention of basic compounds - dissociated silanols)
 activation - 180°C 3 hour

Adsorption of analytes increases with increasing surface activity and area decreases with increasing mobile phase polarity depends on geometrical distribution of functional groups

LLC - Liquid partition chromatography

- separation of analytes between two immiscible phases (liquids) analytes penetration through phase interface into whole space of SP – **absorption** - similar as extraction Advantage over LSC: - retention depends on stationary phase amount $\mathbf{k} = \mathbf{K}_{D} \mathbf{V}_{S} / \mathbf{V}_{m}$ - immobilization of different amount of SP

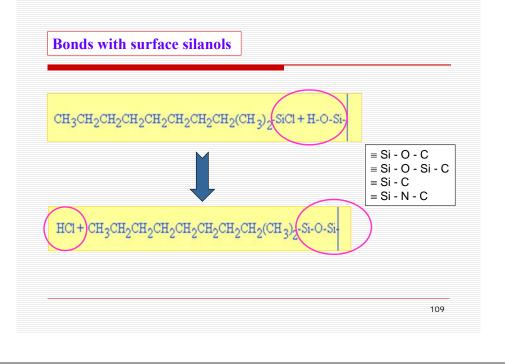
• mechanically immobilized on suitable carrier (silica gel) – physically bonded low solubility in mobile phase → saturation column

• chemically bonded on reactive carrier

- insoluble in mobile phase
- possible use of gradient elution
- possible temperature changes

MAGNITUDE of ANALYTES POLAR INTERACTIONS and ADSORBENT depends on analytes polarity and MP polarity

d.

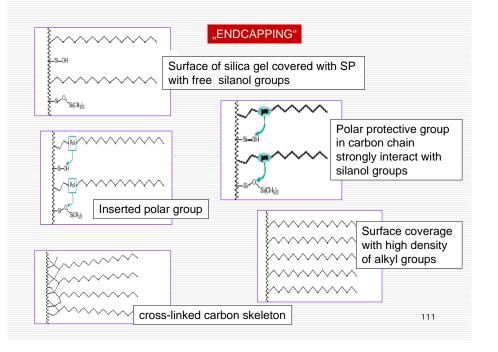

Retention order of compounds on polar adsorbents

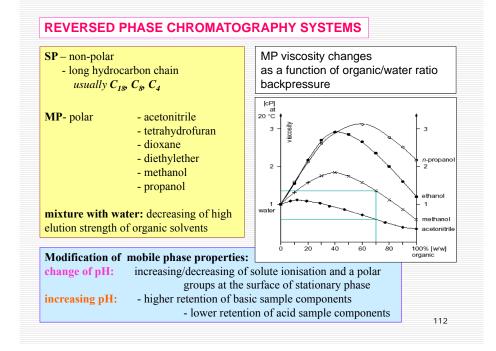
Aliphatic hydrocarbons Aromatic hydrocarbons Halogenated compounds Ethers Tertiary amines Nitryl Nitro compounds Esters of carboxylic acids Ketones Aldehydes

Aldenydes Primary amines Amides of carboxylic acids Alcohols Phenols Carboxylic acids Sulfonic acids Mobile phase for LSC Organic solvent and/or water ⇒ different polarity MP polarity must be lower than SP polarity

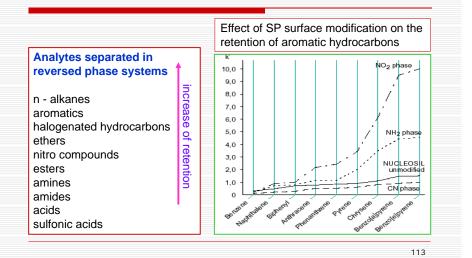
NORMAL PHASE CHROMATOGRAPHY SYSTEMS NPLC, NP-HPLC

Polarity of MP for LSC Heptane Pentane Cyclohexane Benzene Ethyl ether Dichloromethane Acetone 2-propanole water 107

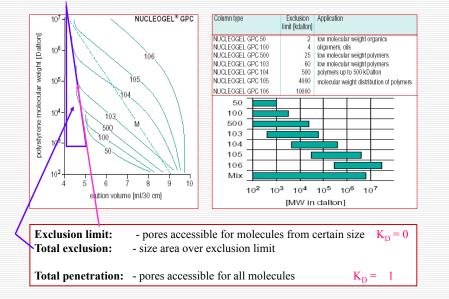


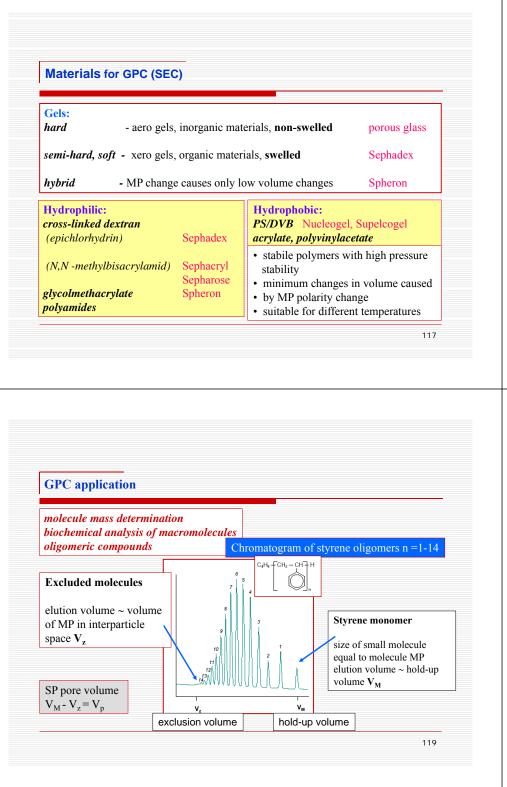


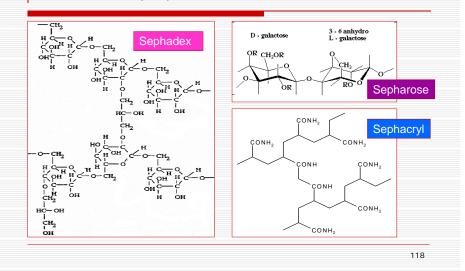
 No polar, hydrophobic hydro carbonic


Octadecyl, base deactiva polymer modification		C	Cyano (Nitrile)
-((CH ₂) ₁₇ -CH ₃	U ₁₈	-(CH ₂) ₃ -CN
Octadecyl, endcapped	CH ₂) ₁₇ -CH ₃	C ₁₈ ec	Nitro -(CH ₂) ₃ O-NO ₂
Octyl, endcapped -((CH ₂) ₁₇ -CH ₃		Diol -(CH ₂) ₃ -O-CH ₂ -CH-CH ₂ I I OH OH
eedy, not endeapped	(CH ₂) ₇ -CH ₃	C ₈	Amino
Phenyl, endcapped	(CH ₂) ₃ -O		-(CH ₂) ₃ -NH ₂
	(CH ₂) ₃ -		Dimethylamino -(CH ₂) ₃ -N(CH ₃) ₂
	(CH ₂) ₃ -CH ₃	C ₄	Sulphonic acid -(CH ₂) ₃ (O)-SO ₃ Na
Propyl			quaternary ammonium groups
Dimethyl	-(CH ₃) ₂	C ₂	-(CH ₂) ₃ -O-CH ₂ -N ⁺ (CH ₃) ₃ Cl ⁻

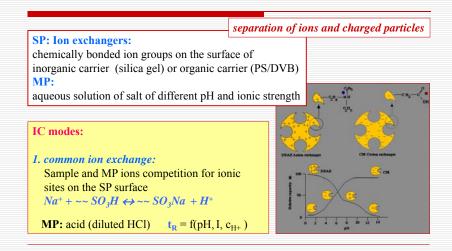
2. Polar

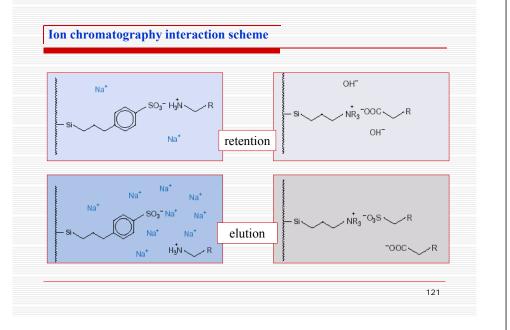



Reversed phase chromatography systems

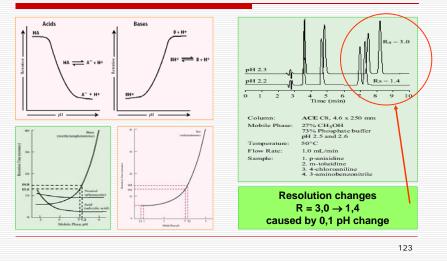

Effect of higher water content > 95% in MP A = analyte plainly visible deterioration of H₂O A ٠ column efficiency А H₂O H₂O H-0 non-polar alkyl chains lose H₂O their "brush-type-structure" drastically decrease of ٠ retention times and resolution 4 114

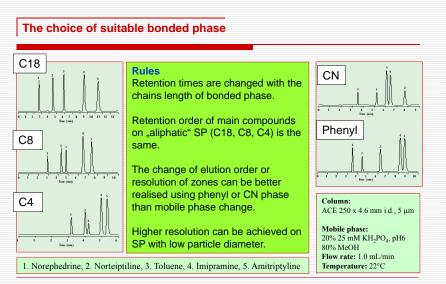
SEC - Size exclusion chromatography - separation according to size of molecules - mechanical separation according to particle hydrodynamic diameter **SP:** particles with high number of pores mobile column packing phase - defined pore size А - pores filed by MP - no interaction with MP and analyte MP: good dissolution of analyte (B) - diffusion into the SP Small molecules injection ÅÅ - highest retention Middle and large - only widest pores retention time Larger than pore diameter - no retention - M_r, _{min} - exclusion limit V_{R} = A - B log $M_{r,A}$ 115

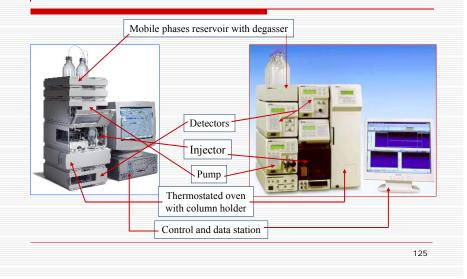




Materials for GPC (SEC)

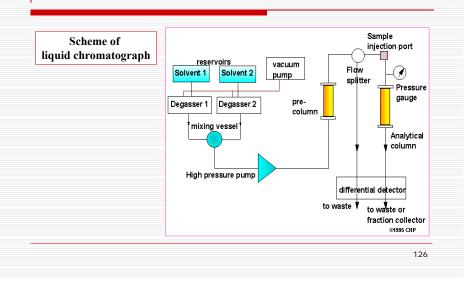

IC – Ion chromatography

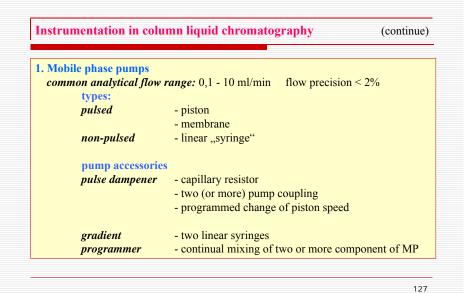


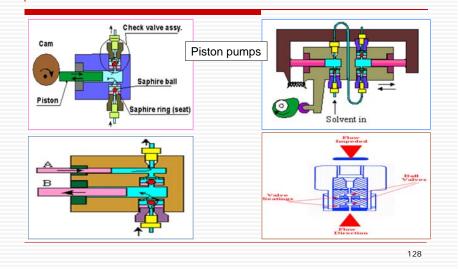


IC modes (continue) 2. Acid-base reaction separation of weak acids $\sim CH_2N^+(CH_3)_3OH^- + CH_3COOH \iff \sim CH_2N^+(CH_3)_3CH_3COO^- + H_2O$ 3. Ligand exchange Competition of sample and MP components for metal on SP surface SP ion exchanger with bonded metal element MP ligand created complex compound with bonded metal Sample creates similar complex as MP component Solutes retentions ratio of complexes constants of bonded metal with MP and sample ligand Separation of amino acids - bonded metals: Cu, Ni - mobile phase ligand: NH3 - sample ligand: NH_2 – groups of amino acids 122

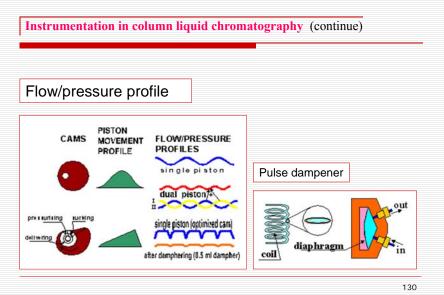
Effect of pH mobile phase change on basic, neutral and acidic compounds retention in reversed phase system

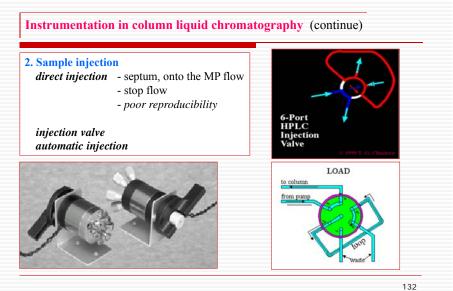




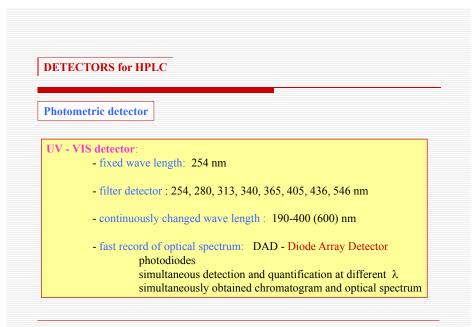

INSTRUMENTATION in COLUMN LIQUID CHROMATOGRAPHY

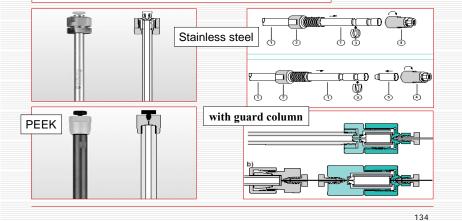

Instrumentation in column liquid chromatography (continue)

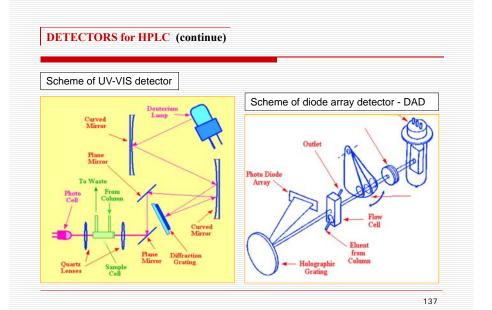




Instrumentation in column liquid chromatography (continue)

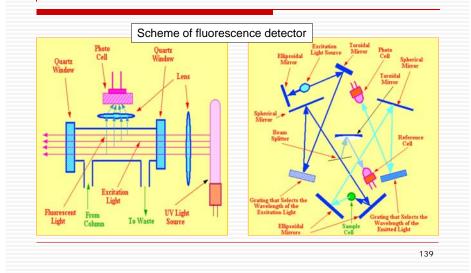




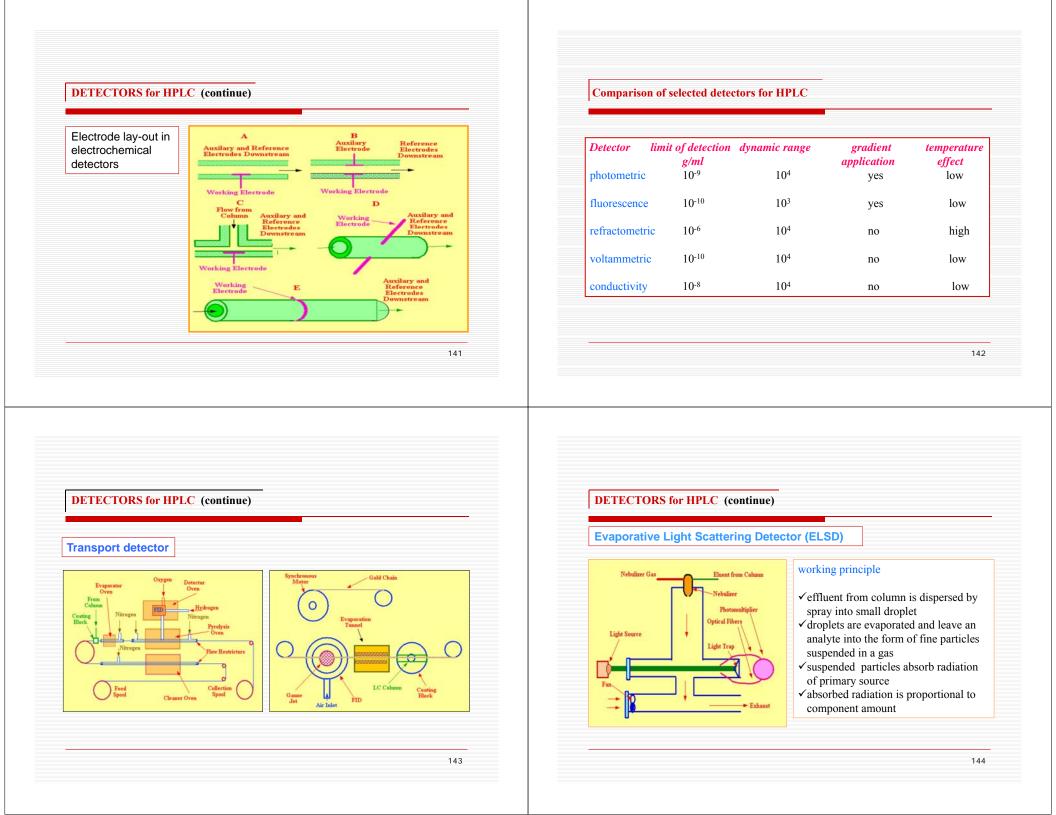


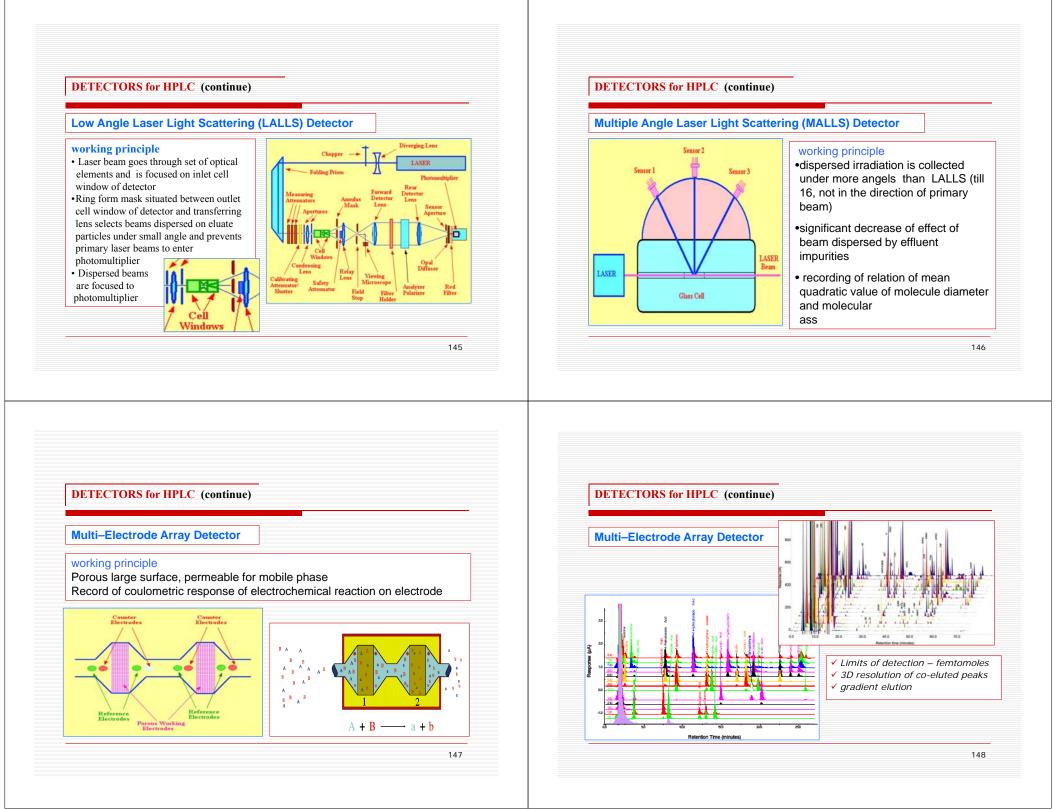
Instrumentation in column liquid chromatography (continue)

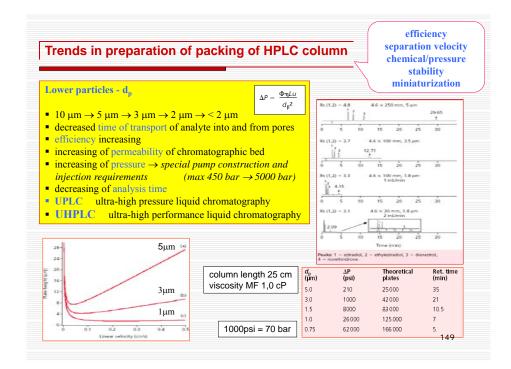
Construction details of selected column for analytical LC

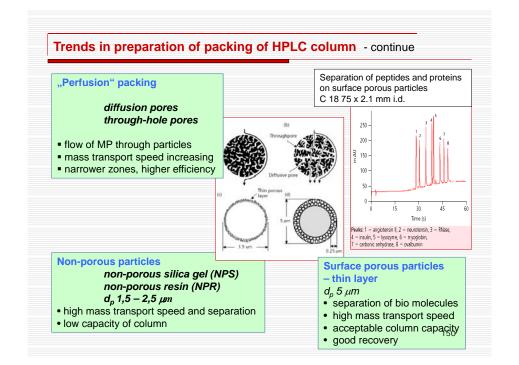


DETECTORS for HPLC (continue)


Absorbance maximum wave length for compounds with selected groups


	chromophor	wave length [nm]	absorption coefficient
acetylide	-C=C	175-180	6,000
aldehyde	-CHO	210	1,500
aminee	-NH ₂	195	2,800
azo group	-N=N-	285-400	3-25
bromidee	-Br	208	300
carboxyle	-COOH	200-210	50 - 70
disulphide	-S-S-	194	5,500
ester	-COOR	205	50
ether	-0-	185	1,000
ketone	>C=O	195	1,000
nitrate	-ONO ₂	270	12
nitrile	-C=N	160	-
nitrite	-ONO	220 - 230	1000-2000
nitro group	-NO ₂	210	high


DETECTORS for HPLC (continue)



DETECTORS for HPLC (continue) Voltammetric (amperometric) detector: - oxidizable / reducible compounds - current is recorded according to impressed voltage between working polarizable and auxiliary electrode - property: good MP conductivity Phenoles, thioles, peroxides, aromatic amines, ketones aldehydes, nitrocompounds, nitriles, esters - ionic compounds - dominant in IC - two electrodes connected to alternating current

Monolithic packing

Column packing created as "uninterrupted" homogenous porous phase

Types:

- agglomeration of polyacrylamide particles
- polyacrylamide block
- agglomeration of micro particulate silica gel bed
- PS-DVB block
- silica gel rod
- membrane of different types

a) disk monolithic column

b) cylindrical monolithic columns in glass and stainless steel shell-

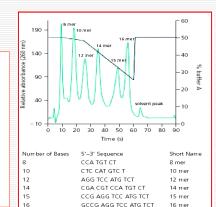
Silica gel rods:

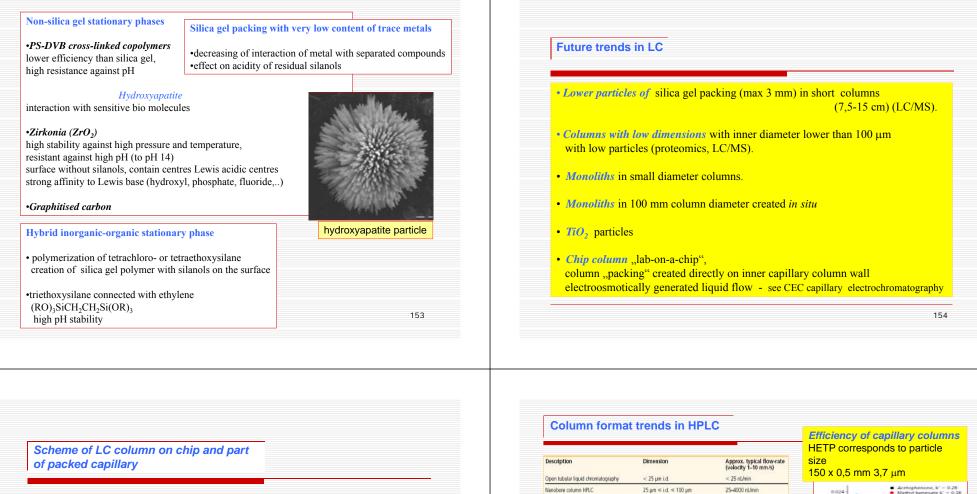
- through-hole pores, diffusion pores, to be modified (C18,...)
- efficiency equal to columns with particles 3-5 μm
- pressure drop 30-40% in comparison with 5 μm particle packing \rightarrow
- column coupling for higher efficiency

monolithic cylinders

151

Polymeric monolithic columns


- •,,uninterrupted" cross-linked porous polymer
- polymethylacrylte, metylacrylat copolymer, PS-DVB

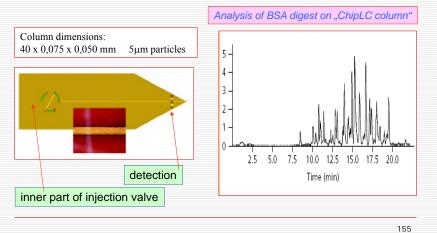

Separation of oligonucleotide on polymeric monolithic column CIM DEAE

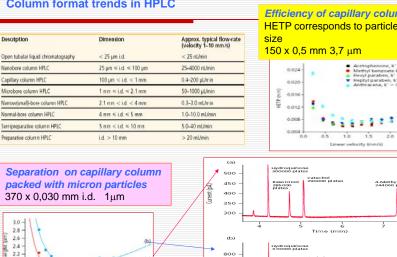
ion exchanger poly(glycidylmethacrylate-ethylenglycol) dimethacrylate

disk: ø16 mm, thickness 3mm

 $F_m = 6 \text{ ml/min}$

2.0 -


1.8 -


1.4 - 0.05

0.15 0.20 0.25

Linear velocity (cm/s)

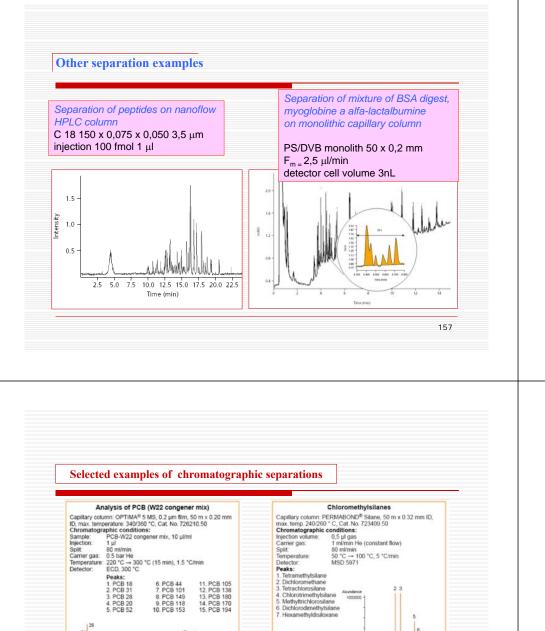
0.30

Irrent (pA)

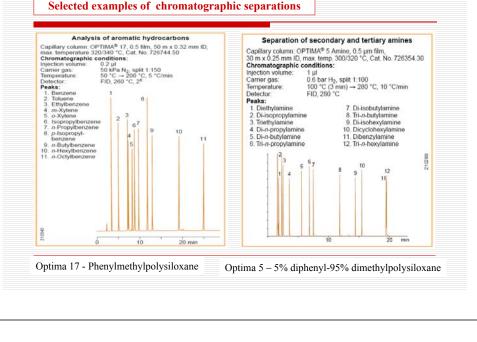
600

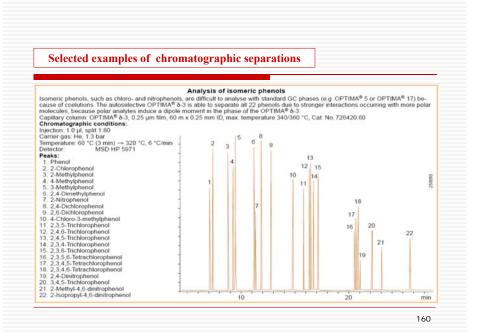
400

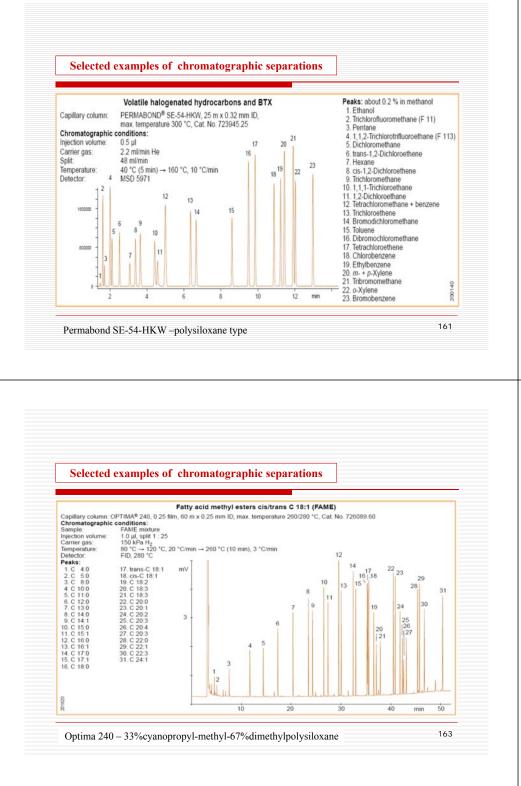
2.5

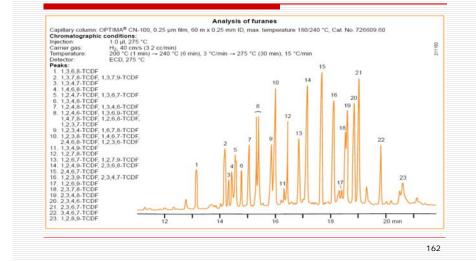

3.0

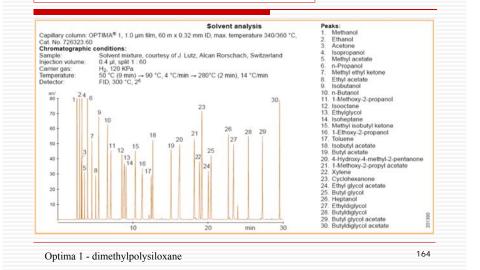
Time (n

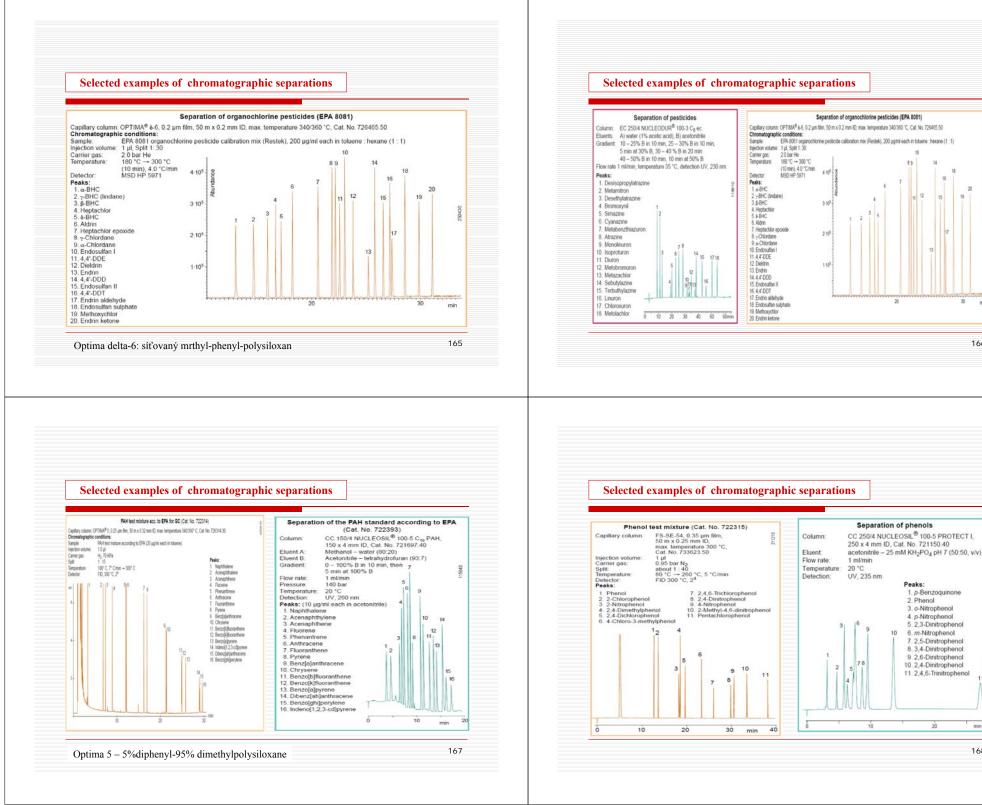

4-Methyl catec


15¢.

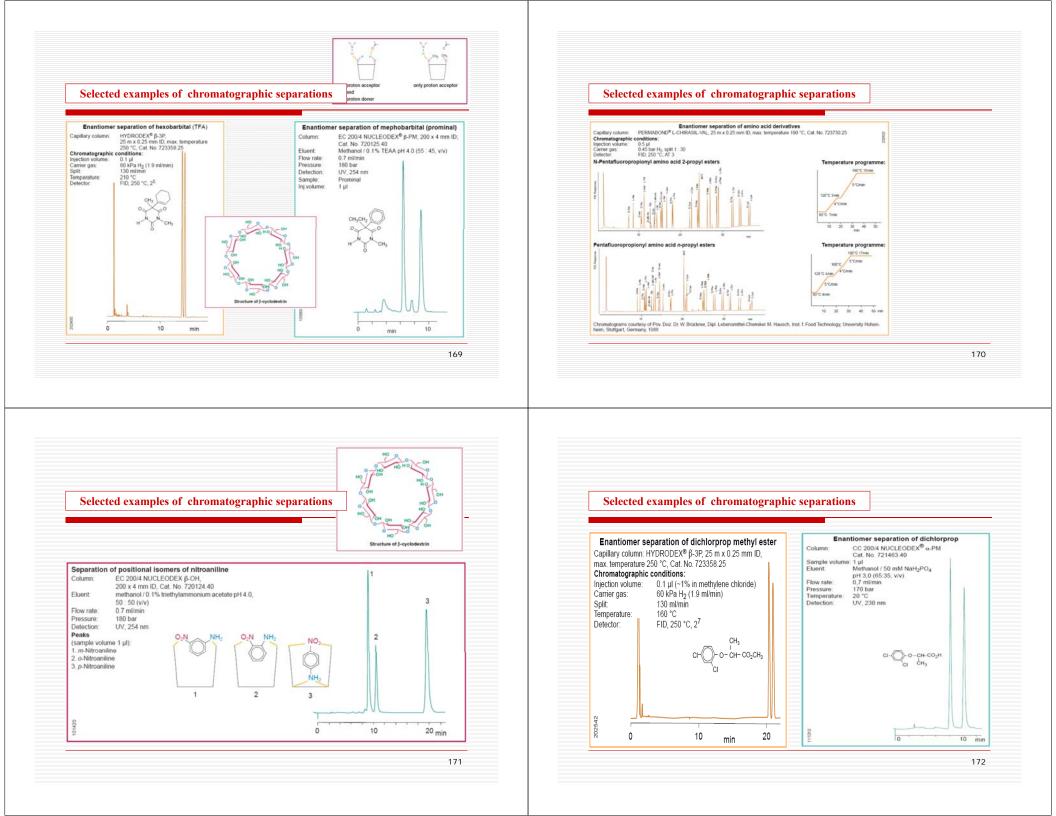

3.5

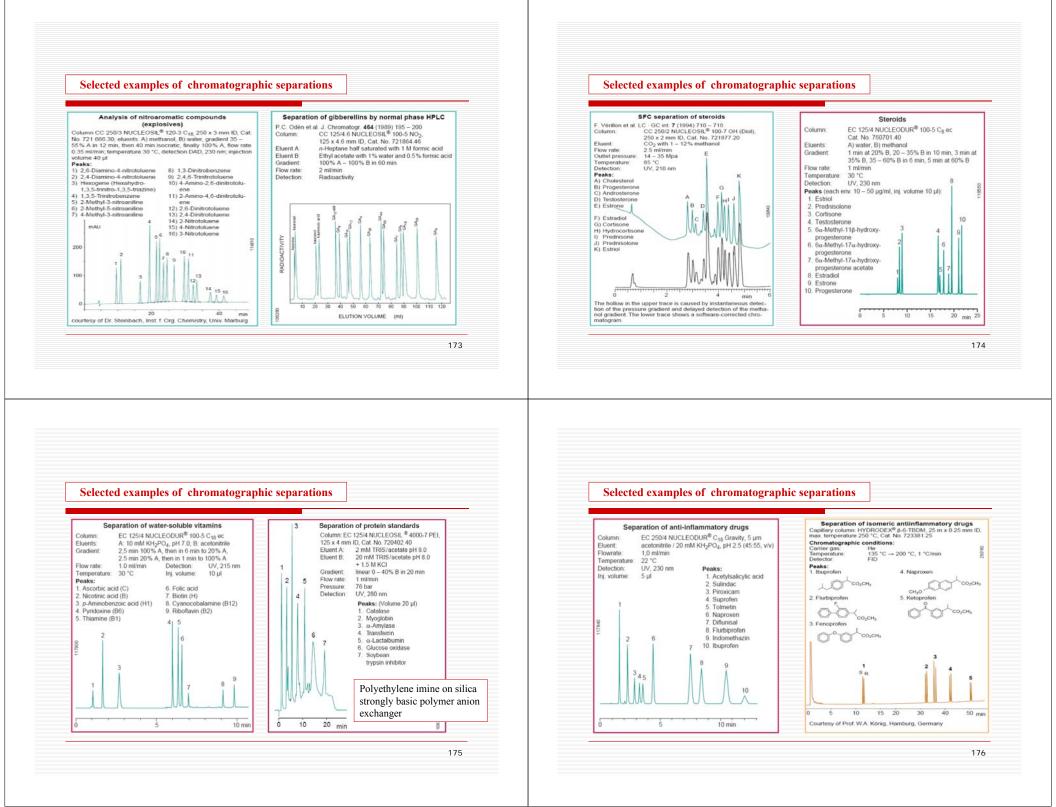

50 min





Selected examples of chromatographic separations


Selected examples of chromatographic separations



min

min

